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Test flow disturbances in an expansion tube 
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(Received 3 July 1991 and in revised form 28 May 1992) 

The operation of an expansion tube is investigated with particular attention given to 
the test flow disturbances which have limited their utility in the past. Theoretical 
bounds for the duration of uniform test flow are first explored using one-dimensional 
ideal-gas relations, together with shock-tube boundary-layer entrainment effects. It 
is seen that test flow duration is limited either by the arrival of the downstream edge 
of the test-gas unsteady expansion or by the arrival of the upstream edge of this 
expansion after it has been reflected from the driver-test gas interface. These bounds 
are seen to be in good agreement with measurements made with large driver-gas 
expansion ratios. For small expansion ratios additional disturbances are observed in 
the test gas. Similar disturbances are also observed in the driver gas. It is postulated 
that these disturbances first appear in the driver gas and are transmitted into the test 
gas before the test gas is expanded. These disturbances remain with the test gas as 
it is expanded and subsequently produce unsteady conditions at the test section. 
Theoretical calculations for the range of frequencies which occur in the test gas 
before the expansion are obtained by modelling the disturbances as acoustic waves. 
It is shown that only the high-frequency components of the disturbances in the 
driver gas can penetrate the driver-test gas interface and this provides a mechanism 
for suppressing disturbances in the test gas. Additional analytical calculations for the 
shift in frequency produced as an acoustic wave traverses an unsteady expansion are 
also presented and it is shown that all frequencies of a given acoustic wave mode 
converge to one frequency. This focusing of frequencies is seen to occur in three 
different facilities. 

1. Introduction 
An expansion tube is an impulse hypersonic facility which can produce high- 

enthalpy quasi-steady flows. In comparison with the more widely used reflected 
shock tunnel, expansion tubes offer substantial gains in both stagnation enthalpy 
and effective stagnation pressure together with a decrease in free-stream dissociation 
levels. These advantages are obtained because the expansion tube accelerates the test 
gas through an unsteady expansion, whereas the reflected shock tunnel utilizes a 
steady expansion through a supersonic nozzle. 

The potential of the expansion tube as a device for generating hypersonic flows was 
pointed out by Trimpi (1962), who predicted theoretically that it could access a large 
range of test conditions. Following this analysis, a number of expansion tubes were 
constructed and assessed experimentally (Norfleet, Lacey & Whitfield 1965 ; Spurk 
1965) with generally disappointing results. The anticipated test times were not 
realized in practice, largely due to the unexpected appearance of high-frequency 
disturbances in the test flow. An exception was the expansion tube described by 
Miller (1977) where a narrow window of acceptably steady test conditions was 
obtained for each test gas. 
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The analysis presented here explores the reasons for the past failure of the 
expansion tube to realize its theoretical expectations. It explains why the window of 
steady test conditions is small and indicates how this window can be widened so that 
these facilities could be used in a variety of hypersonic research. In addition to the 
theoretical results, centreline Pitot pressure measurements obtained with air as test 
gas, are also presented to experimentally confirm theoretical predictions. 

2. Summary of theoretical development 
An expansion tube consists of three consecutive sections; the driver tube, the 

shock tube and the acceleration tube, as indicated in figure 1.  The acceleration tube 
empties unrestrictively into a dumptank test section. These three sections are 
initially filled with the driver, test and acceleration gases, respectively. 

Initially the three sections are separated by two diaphragms. The heavier of these 
is the primary diaphragm which is between the driver and shock tubes, while the 
shock and acceleration tubes are initially separated by the secondary diaphragm. 
Ideally, the secondary diaphragm is massless. For the gas densities used in the 
experiments reported here a massless diaphragm is a good approximation. 

An expansion tube is operated by initially raising the pressure in the driver tube 
so that the primary diaphragm ruptures. This produces a shock which travels 
through the test gas towards the secondary diaphragm. For a massless secondary 
diaphragm the shock ruptures this diaphragm without reflecting, instantaneously 
accelerates, then travels down the acceleration tube with constant velocity. The test 
gas follows the shock and accelerates through an unsteady expansion centred at  the 
secondary diaphragm. The test time is the period of steady flow following the arrival 
of the test-acceleration gas interface at the test section, as shown in figure 2. 

The performance of an expansion tube is measured in terms of the flow properties 
of the test gas at the test section and the time over which the flow is steady. It is 
influenced by twelve independent parameters, namely the lengths and diameters of 
the driver, shock and acceleration tubes, the gases which initially reside in these 
tubes and the initial filling pressures. 

In practice, the internal diameters of the shock and acceleration tubes and the 
geometry of the driver tube are fixed after they have been manufactured. Thus, the 
number of independent parameters which may be varied is reduced to eight. This is 
still a large number and it is this large number of degrees of apparatus freedom which 
makes it difficult to readily acquire an understanding of the performance 
characteristics of an expansion tube. 

2.1. !Pest time limitations 
There are two distinct ranges of flow conditions in which different mechanisms limit 
the test time. These flow regimes will be referred to as the high-enthalpy conditions 
and the low-enthalpy conditions. To a good approximation, the high- and low- 
enthalpy conditions are generated when the driver-gas sound speed at  the driver-test 
gas interface in the shock tube is respectively less than and greater than the test-gas 
sound speed. This approximation becomes less valid as the diameter of the expansion 
tube is increased and as the driver-gas sound speed prior to rupturing the primary 
diaphragm is decreased. 
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FIGURE 1 .  Schematic of an expansion tube. 

2.1.1. High-enthalpy conditions 
High-enthalpy conditions are obtained by using a shock-tube filling pressure 

which is sufficiently low that the driver-gas sound speed decreases across the 
expansion centred at the primary diaphragm to a value which is less than that of the 
test gas at the interface. At high-enthalpy conditions a test time may be predicted 
using ideal inviscid one-dimensional gas dynamics as indicated by Trimpi (1  962). 
Trimpi’s analysis assumes that the test time is limited by the arrival at the test 
section of the unsteady expansion generated when the secondary diaphragm 
ruptures. It can be seen from figure 2 that this is only correct if the acceleration tube 
is sufficiently short that the reflection of the unsteady expansion off the driver-test 
gas interface arrives at  the test section after the downstream edge of the unsteady 
expansion. 

Trimpi’s analysis assumes that the location of the driver-test gas interface can be 
predicted using ideal inviscid one-dimensional gas dynamics. If this assumption were 
correct this interface would be sufficiently far upstream that the reflection of the 
unsteady expansion would not normally limit the test time. However, Mirels (1964) 
has shown that the boundary layer entrains mass and acts like a mass sink. This 
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significantly decreases the distance between the shock and the interface in the shock 
tube. Hence, the unsteady expansion produced when the secondary diaphragm 
ruptures can reflect off the driver-test gas interface and arrive at  the test section 
before the downstream edge of the unsteady expansion. 

The analysis presented here predicts the location of the driver-test gas interface 
using Mirels’ theory and then analytically determines the trajectory of the 
downstream edge of the reflected expansion. The analysis also obtains Trimpi’s 
(1962) result for the trajectory of the downstream edge of the expansion before the 
reflected expansion arrives at  this edge. These two trajectories are then used to 
predict the available test times. It is shown experimentally that this prediction of the 
available test time is good for high-enthalpy conditions. 

2.1.2. Low-enthalpy conditions 
In general, at  low-enthalpy conditions the theoretical assessment applicable to 

high-enthalpy conditions is insufficient. At  low-enthalpy conditions during the 
steady test period predicted by the above analysis, it is found that the test flow can 
be rendered unacceptably noisy by high-frequency fluctuations in observables such 
as the Pitot pressure. It is argued here that the dominant part of this noise can be 
modelled as acoustic lateral waves which are generated in the driver gas. These waves 
are transmitted through the driver-test gas interface into the test gas before the 
secondary diaphragm ruptures. 

It is important to recognize that the mechanisms for generating this noise are also 
present for the high-enthalpy conditions. The noise is not transmitted through the 
interface at  the high-enthalpy conditions because the test-gas sound speed is greater 
than the driver-gas sound speed. For this mismatch of sound speeds it will be shown 
that the interface acts as a low-frequency filter and totally reflects low-frequency 
lateral waves. 

Although not all of the noise sources observed in the driver gas have been 
positively identified, it will be shown that a significant portion can be attributed to 
noise generated in the primary-diaphragm rupturing process. Furthermore, the 
filtering of this diaphragm noise is sufficient to produce acceptable test conditions. 

2.2. Frequency focusing 
A further process which disrupts the test time is produced when the unsteady 
expansion centred at the secondary diaphragm produces a large drop in the sound 
speed of the test gas. It has been shown by Paull &, Stalker (1991) that all frequency 
components of noise transmitted through the expansion will be ‘focused’ into a 
narrow bandwidth of frequencies. This results in a pronounced disturbance 
downstream of the expansion and thus the test flow is rendered useless. Frequency 
focusing is discussed here in more detail and in the context of the more general 
theory. In addition, frequency focusing is used to confirm the existence of lateral 
waves in the test gas. 

The effects produced by frequency focusing generally only disrupt the test flow at 
the low-enthalpy conditions. This is because a t  the high-enthalpy conditions the test 
gas is relatively quiet prior to the secondary diaphragm rupturing. Hence, although 
focusing will occur, the amplitude of the noise is reduced to an acceptable level. 
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3. Experimental apparatus 
Figure 1 is a diagrammatic representation of the expansion tube used in the 

experiments reported here. It is identical to that described by Neely, Stalker & Paul1 
(1991). It incorporates a free piston driver (Stalker 1966) in the driver tube to 
increase the driver-gas pressure sufficiently to rupture the primary diaphragm. 

The inside diameter of the driver tube was 100 mm and the inside diameters of the 
shock and acceleration tubes were 37 m. The length of the shock and acceleration 
tubes were 2.08 m and 3.18 m respectively. These lengths were not changeable. 

Pitot pressure measurements were taken on the centreline at the exit of the 
acceleration tube. The wall pressure was measured 14 mm upstream of the exit of the 
acceleration tube. The Pitot pressure involved a transducer mounted to measure the 
pressure in a cavity which faced upstream into the oncoming flow. Estimates indicate 
that the natural frequency of this cavity exceeded 100 kHz. This was confirmed by 
observing that the rise time of the pressure in the cavity, in response to an impinging 
shock, was less than 5 ps. All quantities were sampled every microsecond. 

4. Test time at high-enthalpy conditions 
At high-enthalpy conditions the test time will be limited by either the downstream 

edge of the unsteady expansion centred at the secondary diaphragm rupture or the 
downstream edge of the reflection of the upstream edge of this expnsion off the 
driver-test gas interface, as seen in figure 2. The theoretical test time is obtained by 
assuming inviscid, one-dimensional flow of a perfect gas in all calculations except 
that which determines the location of the driver-test gas interface. This is obtained 
using Mirels’ (1964) ideal gas theory for boundary-layer entrainment. 

For a one-dimensional inviscid flow of a perfect gas 

u+2/ (y -  1 ) a  = const., (4.1 a ,  b )  

along the characteristics dx/dt = u & a, (4.2a, b)  

where u is the gas velocity, a is the local sound speed and y is the specific heat ratio. 
It follows (Whitham 1974, pp. 157, 158) that within a centred unsteady expansion 

and a = -  2 a 3 + e (  ;) 
y + l  y + l  u3 - -9  

(4.3) 

(4.4) 

where subscript 3 refers to the conditions upstream of the expansion as seen in figure 
2. The origin in (4.3) and (4.4) of the (x,t)-space is at  the rupture of the secondary 
diaphragm. 

4.1. Test time bounds 
If the test time is limited by the downstream edge of the unsteady expansion then 
the test time, T, is the time elapsed between the arrival of the test-acceleration gas 
interface and this edge, aa seen in figure 2. This interface and edge have velocities u5 
and u5-a5 respectively, where subscript 5 refers to the test-gas conditions 
downstream of the expansion. Hence, the test time is 

xA a5 T =  
U5(% - a5) ’ 

where xA is the length of the acceleration tube. 

(4.5) 
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FIGURE 3. Non-dimensional test time for different non-dimensional acceleration tube lengths as a 
function of the ratio of shock speeds in the shock and acceleration tubes for strong shocks with 

Usl us, 

y = p. 

If the test time is limited by the reflected expansion then the test time is 
determined analytically as a function of the elapse time, to, between rupture of the 
secondary diaphragm and arrival of the driver-test gas interface at  the upstream 
edge of the unsteady expansion. Within the expansion the characteristic curve which 
marks the downstream edge of the reflected expansion is obtained analytically from 
integration of (4.2a) with u and a given by (4.3) and (4.4), respectively. The 
intersection of this trajectory and the trajectory of the downstream edge of the 
expansion determines the time for the downstream edge of the reflected expansion to 
emerge from the expansion. The time elapsed between this event and rupturing of the 
secondary diaphragm is 

The downstream edge of the reflected expansion then travels in the uniform flow 
ahead of the expansion with constant velocity ug + a5 until it reaches the test section 
or the test-acceleration interface. In the latter case there is no test time; otherwise 
the test time is 

t ,  = to(a5/a3)*. (4.6) 

It can be seen from (4.1 a) ,  which relates conditions either side of the expansion, (4.6) 
and (4.7) that the non-dimensional test time, T/t,, is a function of the sound speed 
ratio a5/a3 and the non-dimensional acceleration-tube length X = x,/(a3 to) .  The non- 
dimensional acceleration-tube length is the ratio of acceleration-tube length to the 
effective inviscid test-gas slug length in the shock tube when the secondary 
diaphragm ruptures. For strong shocks it follows that this non-dimensional test time 
is approximately a function of the shock speed ratio U,,/U, and the non-dimensional 
acceleration tube length, where Us, and Us are the shock speeds in the acceleration 
and shock tubes respectively. 

Figure 3 displays the non-dimensional Gest time as a function of shock speed ratio 
for different non-dimensional acceleration tube lengths and a specific heat ratio of 3. 
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In the regions where the test time is monotonically increasing with Us/Usa the test 
time is limited by the downstream edge of the unsteady expansion and is determined 
from (4.5). When the test time is monotonically decreasing with Us/Usa the test time 
is limited by the reflected unsteady expansion and is determined from (4.6) and (4.7). 

4.2. Maximum test time 
It can be seen that the reflected expansion severely limits the available test time. 
Hence, if a facility is to have the largest possible window of test conditions then the 
length of the acceleration tube must not be fixed. It should be adjusted for each 
condition so that the test time is maximized. 

From inspection of figures 2 and 3 it can be seen that the maximum available test 
time is obtained when the reflected expansion and the unsteady expansion arrive at 
the test section simultaneously. The maximum test time is indicated by the dotted 
line in figure 3. By equating (4.5) and (4.7) it can be shown that the maximum test 
time is 

Tm = ( tO/M5) (a3/a5)*? (4.8) 

where M5 = u5/u5 is the local Mach number of the test gas. From the substitution of 
(4.8) for T in (4.5) it  follows that this maximum test time is achieved if the non- 
dimensional length of the acceleration tube is 

X = (M5- 1) (a3/a5)&. (4.9) 

Hence, to obtain the best performance from an expansion tube the filling pressures 
and acceleration tube length must be chosen so that (4.9) is satisfied. 

4.3. Estimation of to 
In all the experiments reported here Mirels’ (1 964) turbulent boundary-layer analysis 
for an ideal gas and strong shocks has been used to determine the location and 
velocity of the driver-test gas interface. This analysis indicates that turbulent 
boundary-layer theory is required if P4 ro > 0.085 m kPa (where T,, is the tube radius). 
In the experiments reported here P4 > 0.062 m kPa. Hence, although some 
experiments are in the transitional region the majority should have turbulent 
boundary layers. 

The elapse time to between rupture of the secondary diaphragm and the arrival of 
the interface at the upstream edge of the unsteady expansion is determined by 
assuming that the interface travels with constant velocity u, after the diaphragm 
ruptures. The position of the upstream edge of the unsteady expansion is obtained 
as a function of time from the characteristic equation (4.2b). It is assumed that after 
the diaphragm ruptures the gas velocity between the shock and the interface varies 
linearly with distance. This approximation is made to obtain a simple analytical 
relationship between to and the properties of the gas behind the shock. A more 
accurate method would be to use the gas velocity provided by Mirels (1964). For this 
linear approximation the gas velocity encountered by the upstream edge of the 
expansion is 

(4.10) 

where I is the separation of the shock and interface when the diaphragm ruptures, xi 
is the position of the interface relative to an origin located at the diaphragm, us0 is 
the gas velocity immediately after the primary shock and ui is the interface velocity. 
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The positive x-direction is in the flow direction. The values of u, and 1 are obtained 
using Mirels’ (1964) theory for boundary -layer entrainment. 

If the interface travels with constant velocity then 

xi = u,t-1. (4.1 1) 

The substitution of (4.1 1) into (4.10) gives the gas velocity upstream of the expansion 
as a function of position and time. If it is also assumed that the sound speed is 
constant and equal to a3 then an estimate of the trajectory of the upstream edge of 
the unsteady expansion is obtained from the integration of the characteristic 
equation (4.2b) with the velocity given by (4.10). The intersection of this curve and 
the straight line (4.11) gives an estimate of the elapse time to of 

a3 + ui - u30 (4.12) 

5. Acoustic wave theory 
It will be shown in $8 that the test times predicted in $4 are accurate only at  

higher-enthalpy conditions. A t  lower-enthalpy conditions where the analysis of $4 
predicts considerable test time, it has already been noted that the flow is in fact very 
‘noisy’. This noise will be modelled as acoustic waves which are small perturbations 
of both velocity and pressure about a steady mean. It will be seen that this model 
describes the properties of the noise sufficiently to allow its effects to be understood 
and controlled. 

For small perturbations Whitham (1974, pp. 157,158) shows that the velocity and 
pressure can be written as 

u = uo+vq5, (5.1) 

and P = P o - P o w / a t ,  (5.2) 
respectively, where the potential function q5 is a solution to the wave equation, uo, p ,  
and po are the unperturbed steady velocity, pressure and density respectively and t 
is time. 

It will be seen that the noise observed experimentally has properties consistent 
with those potential functions which are only dependent on time, radial distance r ,  
and axial distance x. These functions have the form 

(5.3) q5 = J,(W exp ( i 4 * / 3 4 4 ) ,  

where J, is the zeroth-order Bessel function of the first kind, a is the local sound 
speed, w is the fundamental frequency and the dispersive term is 

/3 = (1 - (ha/w)2)t. (5.4) 

The spatial origin is fixed in a frame in which the gas is at  rest. 

condition, 
( 5 3 )  

at the wall of the expansion tube. It follows that Ar, is equal to any of the infinite 
number of discrete zeros of the first-order Bessel function of the first kind, 4. The 
first zero of J1 occurs when hr, equals zero. J,(O) = 1, hence from (5.3) this solution 
is radially independent. Solutions of this form are called longitudinal waves. All other 

The permissible values of h are obtained by imposing the no-penetration boundary 

(WlW (To, t )  = 0 ,  
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solutions are radially dependent and will be referred to as lateral waves. For the 
lowest-order lateral wave h z 3.83/r0. 

Centreline Pitot pressure measurements are used in $8 to detect the acoustic wave 
disturbances. Hence, it is important to know how a small perturbation would affect 
the Pitot pressure measurement. It will be assumed that fluctuations in Pitot 
pressure, PT, produced by small disturbances can be determined from Rayleigh’s 
Pitot pressure formula (Liepmann & Roshko 1957) 

(5.6) 

From the substitution of (5.1) and (5.2) for the velocity and static pressure in (5.6) 

PT = ew(&y+ l ) ) s (y - i (Y-  1)M-2)*, 

where P, is the static pressure and M is the local Mach number. 

it can be shown that, to first order in the derivatives of #, 

whereM, and PT are the unperturbed Mach number and Pitot pressure, respectively. 
If the potential function is of the form (5.3) then the Pitot pressure can be expressed 
as 

= -iB(M,a, PI 7 )  $ 1 9  (5.8) 

where (5.9) 

5.1. Doppler shifts 
In (5.3), x has its origin fixed in a frame in which the unperturbed gas is at rest. 
However, in a laboratory the unperturbed gas is in motion relative to the observer. 
Thus, a Doppler shift in the frequency is observed. 

5.1.1. Doppler shift due to a linear translation 
If the unperturbed gas moves with a constant velocity u relative to the laboratory 

then the frequency observed in the laboratory is obtained by translating the axial 
component in (5.3) by ut. It can then be shown from the coefficient of the time 
variable in the exponent of (5.3) that the frequency observed in the laboratory would 
be 

v = w (  1 T uP/a)/2x.  (5.10) 

In the case of a longitudinal wave /3 = 1. Hence, the Doppler shift is only dependent 
upon the local Mach number u/a .  In contrast, the form of /3 ensures that the Doppler 
shift for lateral waves depends separately on both the sound speed and gas velocity. 

5.1.2. Frequency change across an unsteady expansion -frequency ‘focusing’ 
When an acoustic wave encounters an unsteady expansion, solutions of the form 

(5.3) are not directly applicable within the confines of the expansion because the 
unperturbed state is not steady. However, these acoustic wave solutions can be used 
to determine the shift in frequency which would be observed as the acoustic wave 
traverses the expansion. Following the approach used by Godunov (1959) the 
expansion is divided along the characteristic lines into discrete steady regions and 
acoustic theory is applied within these regions. Between these regions there is a 
discontinuity in both sound speed and gas velocity. Furthermore, the discontinuity 
itself has a velocity which is different to both the gas velocities of its adjacent regions. 
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Before the shift in frequency across the entire expansion is obtained, the frequency 
shift across an interface separating two regions which have different sound speeds 
and gas velocities is determined. To be applicable to subsequent analysis of the entire 
expansion the interface has a velocity different to the gas velocities in both regions. 
The velocity of the interface and the gas velocities either side of the interface are 
constant with time. The two regions will have their properties subscripted by 1 and 
2 and it will be assumed that an acoustic wave described by (5.3) is incident in region 
1 and is transmitted through the interface into region 2. 

The interface is a boundary for region 2 upon which conditions are imposed which 
uniquely determine the solution to the wave equation in region 2. In the degenerate 
case when there is no discontinuity in the gas velocities and the interface velocity is 
the same as the gas velocity, it  can be seen by equating the time coefficients in the 
exponent of (5.3) from either side of the interface that the fundamental frequency is 
the same in both regions. However, in the more complex situation where there is a 
discontinuity in the gas velocity this is not the case. The interface is the boundary 
which drives the solution in region 2; hence, the fundamental frequency in region 2 
must be chosen so that it is equal to the frequency which is observed at the interface. 
That is to say, the frequency as observed in the frame of the interface shall be 
continuous across the interface. Hence, from (5.10) the fundamental frequencies 
either side of the interface are related by 

W l ( 1  + ( U 1 - , 4 P l l a l )  = %(I +(Uz-V)Pz/az) ,  (5.11) 

where v is the interface velocity. 
The change in frequency across the entire unsteady expansion is now considered. 

In this more general case the expansion is initially divided into a finite number of 
regions in which the properties are constant, as described above. The properties of 
the regions will be subscripted with the letter i. i = 0 refers to the steady region 
upstream of the expansion. 

The interface between adjoining regions i and i+ 1 propagates upstream along a 
characteristic line and therefore has velocity u,-a,. Hence, from (5.11) the 
fundamental frequencies either side of the interface are related by 

( 4 1  +Pi) = W i + l ( l +  (U1+1-U(+a,)P,+l/a,+l). (5.12) 

The sound speeds and gas velocities of the two regions are related by ( 4 . 1 ~ ) .  
Eliminating the velocity terms in (5.12) it follows that 

W 2 ( l + / 3 , )  = w,+l ( l +  ( 1--- Y + l  da,)A+l)’ 
Y - 1 ao1 

(5.13) 

where da, = a,+, -a,. 
The limit in which the number of discrete steady regions approaches infinity and 

the amplitudes of the discontinuities approach zero is then taken. The resulting 
equation is combined with a relationship obtained from (5.4) between the 
infinitesimal change in the fundamental frequency and the infinitesimal changes in 
the dispersive term and the sound speed. This is done in order to develop a 
differential relationship between the sound speed and the dispersive term within the 
expansion, which when integrated gives 

(5.14) 
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FIGURE 4. Dispersive term aa a function of sound speed ratio across a centred unsteady expansion 
for different initial values of the dispersive term. y = p. a, is the sound speed upstream of the 
expansion. 

Figure 4 plots the dispersive term, 8, as a function of the sound speed for different 
values of Po for a specific heat ratio of 3. It can be seen that in the limit as the sound 
speed approaches zero /? approaches t (y -  1) independent of Po. It could be said that 
the frequencies are 'focused' by the unsteady expansion. From (5.4) and (5.10), in 
the laboratory frame of reference, the focus frequency is 

A(a+t(y- 1)u)  
V =  

27c( 1 - (&- 1))Z)t . 
(5.15) 

From (4 . la)  it  can be seen that the bracketFd term in the numerator of (5.15) is only 
dependent upon the steady-state conditions upstream of the expansion. Hence, if the 
conditions in the shock tube do not chan& the frequency to which each mode is 
focused will be independent of the initirll filling pressures and gases in the 
acceleration tube. 

If all components of noise described byi (6.31' were to traverse an unsteddy 
expansion across which the sound speed dropped-syfficiently, then at the downstream 
end of the expansion discrete narrow bands of frgquencies corresponding to diffkrent 
modes should be observed. It is important Cb"Hbte that (5.15) implih that 
longitudinal waves ( A  = 0) will not be observed as an oscillatorf disturbance. 

Focusing of the dispersive term across an unsteady expansion occurs because both 
the sound speed decreases and the gas velocity increases. If an interface is stationary 
with respect to the gas on either side and a decrease in the sound speed is the only 
physical quantity to change across the interface then from (5.4) the value of the 
dispersive term must increase. However, if a velocity increase is the only change 
across the interface then the equality (5.11) is preserved by a decrease in the value 
of the dispersive term (and therefore the fundamental frequency). 

As a gas flows through an unsteady expansion the velocity increases and the sound 
speed decrease. Hence, two opposing changes to the value of the dispersive term will 
be produced by the expansion. It can be seen from (5.11) that the fundamental 
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frequency shift created by a velocity change is one which is multiplied by the 
dispersive term. Hence, if the dispersive term is small, the change in the velocity 
produces a less significant effect on the change to the value of the dispersive term 
than does the change in the sound speed. Hence, as the value of the dispersive term 
is driven by the change in sound speed, the value of the dispersive term increases. In  
contrast, if the dispersive term is sufficiently large that the velocity change drives the 
change in the value of the dispersive term then the dispersive term decreases. The net 
result is that the values of the dispersive term converge to one value. 

5.2. Amplitude change at an interface - rejection and transmission coeficients 
It will become apparent that the sound speeds on either side of the driver-test gas 
interface play a major role in determining the amplitude of the noise transmitted into 
the test gas. If the sound speed changes across an interface between two media then 
an acoustic wave approaching the interface will be both reflected and transmitted. 
If the interface is stationary relative to the two media the fundamental frequencies 
of the incident, reflected and transmitted waves are the same. 

5.2.1. Rejection on transmission coegicients for potential functions 

In the case of a longitudinal wave the reflection and transmission coefficients for 
the potential function q5 are obtained by assuming the velocity and pressure are 
continuous across the interface. From (5.1) and (5.2) the reflection and transmission 
coefficients for the potential function q5 are 

and 

c, = Pl a1 Yz - Pzaz Y1 

c , = 2 2  a Pl a2 Y1 

P1alYz+Pzaz~ly 

a1 Pl a1 Yz +Pzaz 71 ’ 

(5.16) 

(5.17) 

respectively, where p1 and p2 equal one and subscripts 1 and 2 refer to the medium 
in which the wave is incident and transmitted respectively. It should be noted that 
these coefficients are different to those for the velocity and pressure. These latter 
coefficients are determined from (5.16) and (5.17) via (5.1) and (5.2). 

In the case of a lateral wave it can be seen from (5.1) that there are two non-zero 
velocity components. It is impossible to collectively satisfy continuity across the 
interface of both velocity components and the pressure. To overcome this dilemma 
and to be consistent with the no-penetration boundary condition (5.5) it  will be 
assumed that slip can occur at the interface so that the axial velocity is the only 
component which is continuous across the interface. If the sound speed of the 
medium into which the wave is transmitted is less than w l h ,  so that pZ is real, it  can 
be shown as above that the reflection and transmission coefficients for the potential 
function q5 are (5.16) and (5.17) respectively. However, if the sound speed of the 
medium into which the wave is transmitted is greater than w / h  then p2 is imaginary 
and exponential decay of the transmitted solution occurs. In  this case the 
transmission coefficient (which determines the amplitude of the transmitted potential 
function a t  the interface) is 

(5.18) 

and the reflection coefficient is one. 
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FIGURE 6. Reflection coefficients for different dispersive terms as a function of sound speed 
ratio across an interface. y1 = Q. yn = 5. 

5.2.2.  Minimum frequency transmitted across an interface 
Figures 5 and 6 show the transmission and reflection coefficients of the potential 

function as functions of sound speed ratio across the interface for different values of 
the incident wave dispersive term, y1 = f and yz = %. In figure 5 it  can be seen that 
the transmission coefficient has a cusp for each value of the incident dispersive term. 
If the sound speed ratio is greater than that at  the cusp the transmitted wave decays 
and the transmission coefficient is given by (5.18). For sound speed ratios less than 
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FIGURE 7. The ratio of the lowest possible lateral wave frequency to the lowest-frequency lateral 
wave which does not decay when transmitted, as a function of local sound speed ratio across the 
interface, for different values of the local Mach number of the incident region. 

that at  the cusp the transmitted wave does not decay and the transmission coefficient 
is given by (5.17). If the sound speed ratio is that for the cusp it can be seen from 
(5.1), (5.2) and (5.3) that the energy of the disturbance is totally confined in a 
pressure wave. The velocity of the disturbance is zero because p2 is zero. 

Remembering that p increases as w increases, figure 5 indicates that for a given 
sound speed ratio, all frequencies above some minimum value will not decay. It is 
important to know this minimum frequency. Noting that it is the frequency for 
which pa equals zero, it follows from (5.4) that it occurs when w equals Aa,. Recalling 
that the fundamental frequencies must match at the interface, the substitution of 
this value of the fundamental frequency into (5.4) gives the value of the 
corresponding incident dispersive term, 

P1 = (1 - (a,/a,)”~. (5.19) 

In an experiment the media move relative to the laboratory and by (5.10) this leads 
to an observed Doppler shift in frequency. If, in the incident medium, vL is the 
frequency measured in the laboratory frame of reference which corresponds to pl in 
(5.19), thed from the substitution of (5.19) for 8, in (5.10) and with the fundamental 
frequency determined from (5.4) it follows that 

vo/vL = (al/a2) (1 TM,U - (a l /a ,W1,  (5.20a, b )  

where M = ul/al is the local Mach number of the medium in which the wave is 
incident, and 

vo = Aa1/(2n) (5.21) 

is the lowest frequency (p = 0) at which a lateral wave can exist in the incident 
medium. vL is the lowest frequency in the incident medium, as observed from a 
laboratory frame of reference, which would be transmitted through the interface. 

Figure 7 displays the ratio vo/vL as a function of the shock speed ratio across the 
interface for different values ofM, for waves travelling in the flow direction (5.20b). 
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In the experiments considered here the frequencies of the waves travelling upstream 
are too small to be considered as disruptive to the flow. 

5.2.3. Transmission coeficient for the Pitot pressure 
In $8 disturbances are in the main detected using centreline Pitot pressure 

measurements. Therefore, the transmission coefficient, CTp, for the Pitot pressure 
perturbations is most relevant to the measurements presented below. Following 
convention, CTp is defined as the ratio of the amplitude of the transmitted Pitot 
pressure perturbations to the amplitude of the incident Pitot pressure perturbations. 
This coefficient is determined in the normal way by first adjusting the amplitude of 
the potential function 9 so that the amplitude of the incident Pitot pressure 
perturbation is unity. The transmission coefficient for #J given by (5.17) is then used 
in (5.8) to determine the amplitude of the transmitted Pitot pressure disturbances. 
It thus follows that this amplitude is the transmission coefficient for the Pitot 
pressure. When exponential decay does not occur i t  can be shown that 

(5.22) 

6. Experimental determination of driver-gas properties and interface 
detection 

The analysis of $8 requires the driver-gas sound speed to be determined 
immediately behind the driver-test gas interface. The location of the interface is also 
required. Two different methods are employed, depending on the physical quantities 
which were measured. 

In  some experiments the centreline Pitot pressure, static pressure and shock speed, 
Us, were measured. In  these cases Rayleigh’s Pitot pressure formula (5.6) is used to 
determine the local Mach number of the driver gas. The driver-gas sound speed at the 
driver-test gas interface is obtained from this Mach number by assuming that the 
driver-gas velocity is equal to the test-gas velocity. The test-gas velocity is 
determined from real-gas calculations (McIntosh 1968, which is a modification of the 
code produced by Lordi, Mates & Moselle 1966) based on the measured shock speed. 
The accuracy of this technique is demonstrated in the Appendix where real-gas 
calculations of the test-gas Mach number are compared with the Mach number 
deduced from (5.6). 

Where insufficient properties were measured to determine the Mach number from 
(5.6) the driver-gas sound speed at  the driver-test gas interface is determined from 
the rupture pressure of the primary diaphragm, the sound speed and the filling 
pressure of the driver tube. It will be assumed that the mechanism through which the 
driver gas accelerates is as follows. 

The driver gas is compressed adiabatically in the driver tube by the free piston 
until the primary diaphragm ruptures. A t  this time the driver gas is assumed to be 
at rest. The cross-sectional area of the driver tube is 7.3 times that of the shock tube. 
Therefore, to a good approximation, the driver gas in the driver tube remains at rest 
even after the primary diaphragm ruptures. It is assumed that the driver gas then 
undergoes a steady subsonic expansion to the entrance of the shock tube where the 
flow is assumed to be sonic. This point will be defined as the throat. From the throat 
the driver gas accelerates through an unsteady expansion to the velocity deduced 
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from the measured shock speed. In all calculations the driver gas is assumed to be 
perfect. 

If Po and a, are the driver-gas pressure and sound speed before compression then 
the sound speed, a,, when the primary diaphragm ruptures is given by 

a, = ao(P,/Po)e, (6.1) 

where P, is the primary diaphragm rupture pressure. This pressure was determined 
using a hydraulic rig. The pressure applied to a diaphragm is recorded as it is slowly 
increased. When the diaphragm ruptures the last recorded pressure is taken as the 
rupture pressure of the diaphragm. 

For a large area ratio between the driver and shock tubes the sound speed a t  the 
throat, a,, is approximately related to the sound speed before rupture by 

a, = (+yal. 

Finally, the driver-gas sound speed in the shock tube is related to the sound speed 
at the throat by (4.la).  Since the flow a t  the throat is sonic it then follows that 

a2 =+(Y+l)a,-+(y-i)u, .  (6.3) 
From (6.1), (6.2), (6.3) and real-gas calculations, which determine u2 from the 
measured shock speed, the sound speed of the driver gas can be obtained. 

The location of the interface has to be determined from Pitot pressure 
measurements. Since there is a change in Mach number across the interface there 
should, theoretically, be a change in the Pitot pressure at  the interface. This is indeed 
observed; however, in addition, under certain conditions the mixing of the driver and 
test gases can produce a region of low-density gas at  the interface (Levine 1970). This 
region would produce a dip in the Pitot pressure record. This characteristic is 
sometimes more distinguishable than the change in Pitot pressure created by the 
change in Mach number across the interface. 

In $8 and the Appendix the interface is identified by first making a theoretical 
prediction using Mirels’ (1964) analysis, then a dip and or a step change in the Pitot 
pressure is sought near this predicted location. 

7. Test time limitations at high enthalpies 
As outlined in $4 and displayed in figure 3, for sufficiently large acceleration-tube 

shock speeds, the test time is limited by the downst,ream edge of the unsteady 
expansion. If the conditions in the shock tube are unchanged and the acceleration 
tube shock speed is decreased then the test time should increase to its maximum. 
With a further decrease in acceleration-tube shock speed the test time should 
decrease as it is terminated by the reflection of the unsteady expansion off the 
driver-test gas interface. If the acceleration-tube shock speed is decreased sufficiently 
there will be no test time. 

Figures 8 (a)-8 ( d )  are centreline Pitot pressure records which display these 
phenomena. The driver gas was argon. It was compressed from 120 kPa to the 
primary diaphragm rupture pressure of 34.5 MPa. The test and acceleration gases 
were air. The shock-tube filling pressure was 3.4f 0.15 kPa and the shock-tube shock 
speed was 2400 f 200 m/s. The acceleration-tube filling pressure was varied between 
5.4 & 1 Pa and 66 & 1 Pa which produced variation in acceleration-tube shock speed 
between 4400 m/s and 3700 m/s respectively. 
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FIGURE 8. Expansion-tube centreline Pitot pressure records. Argon driver, air test and acceleration 
gases, P, = 130 kPa, PI = 34.5 MPa, P4 = 3.4 kPa, Us = 2400 m/s. T marks the test time, E marks 
the predicted downstream edge of the unsteady expansion and R marks the predicted downstream 
edge of the reflected unsteady expansion. (a) P7 = 5.4 Pa, (b)  P7 = 16 Pa, (c) P7 = 26 Pa, ( d )  
P7 = 66 Pa. 

120 

0 

FIGURE 9. Test time aa a function of acceleration-tube filling pressure. Air test and acceleration 
gases. Squares: Test time aa measured from figure 8. P4 = 3.4kPa, U, = 2400 m/s, y = i, 
ro = 18 mm, xs = 3.18 m, x,, = 2.08 m. 

The theoretical locations of the downstream edge of the expansion (in figure 8a) 
and its reflection off the driver-test gas interface are marked with the letters E and 
R respectively. If the reflected expansion arrives before the expansion as in figures 
8 (b)-8 (c)  the location of the downstream edge of the expansion cannot be determined 
analytically and therefore is not located on these figures. 

17-2 
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Figure 9 displays the predicted test time as a function of acceleration-tube filling 
pressure for the above shock-tube conditions. This figure also shows the measured 
values of the test time taken from figures 8(a)-8(d). It can be seen that there is 
reasonable agreement between prediction and measurement for the data at higher 
filling pressures. 

In  figure 8 ( a )  the expansion limits the test time. The accuracy of the predicted test 
time in this case is not as good as in figures 8 ( b ) - 8 ( d )  where it is limited by the 
reflected expansion. However, inspection of figure 9 indicates that when the test time 
is limited by the expansion, a small error in the acceleration-tube filling pressure will 
produce a large variation in the test time. Therefore this condition is not expected 
to produce accurate results. 

A .  Paul1 and R .  J .  Stalker 

8. Acoustic wave results 
In  this section experiments are presented which show that the oscillatory noise 

which is detrimental to the expansion tube test flow is consistent with a first-order 
lateral acoustic wave model. Furthermore, it is shown that a large proportion of this 
noise is generated in the driver gas in the region of the primary diaphragm. 

8.1. Shock-tube results 
Initially the secondary diaphragm was removed so that the expansion tube was 
simply a shock tube. This experiment was done to measure the spectral composition 
of the noise in the driver gas. These results are used in $8.2 to predict the attenuation 
of the noise which would occur in the expansion tube. 

The driver gas was helium and was compressed from 130 kPa to 34.5 MPa at which 
point the primary diaphragm ruptured. The shock tube was filled with air to 
2.66 kPa. The shock speed measured over the last 350 mm of the shock tube was 
4000 m/s. Figures 10(a) and 10 ( b )  respectively display the Pitot and static pressures 
as a function of time. 

8.1.1. Driver-gas flow properties 
Before a critical analysis of the spectral distribution of the driver-gas noise can be 

made the flow properties of the driver gas must be obtained over the period in which 
the spectral composition is obtained. 

The location of the driver-test gas interface was determined as in $6 and is 
concluded to be coincident with the large dip in the Pitot pressure 43 ps after the 
shock. The spectral decomposition will be made in the relatively steady period 
between 200 and 456 ps after the shock. Within this period the Mach number and gas 
velocity are required. 

The Mach number is obtained from Rayleigh’s Pitot pressure formula, (5.6). The 
average Pitot and wall pressures in this period are 3780 and 720 kPa, respectively. 
Hence, from (5.6) with a specific heat ratio of the average local Mach number is 1.80. 

The gas velocity is now determined from the shock speed. However, there is a 
complication. From figure 10 (b )  it  can be seen that there exists a compression in the 
driver gas starting at  the interface and extending to the start of the steady period 
over which the spectral decomposition is made. This disturbance is possibly caused 
by the acceleration of the driver-test gas interface. Whatever its cause may be, it will 
produce a difference between the velocity at  the interface and the velocity during the 
period under consideration. In  order to determine the velocity within this steady 
period it will be assumed that the sound speed and gas velocity can be related 
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FIGURE 10. (a) Shock-tube centreline Pitot pressure and ( b )  static pressure records. Helium driver, 
air test and acceleration gases. I is the location of the interface. D is the period over which the 
decomposition waa made. Ps * 130 Wa, Pi = 34.6 m a ,  U, = 4OOO m/s, Pa = 2.66 kPa. 

throughout this disturbance by (4.la). Hence, if the velocity and Mach number are 
known at the interface, then by (4.la) and the Mach number just obtained, the gas 
velocity can be obtained. 

Clear of the interface transients (8Op after the shock) the unperturbed (or 
average) driver-gas Pitot and wall pressures are 4037 and 494 kPa, respectively. 
Hence, from (6.6) with y = 8 the unperturbed local Mach number of the driver gas at 
the interface is 2.29. 

The driver-gas velocity at the interface is assumed to be equal to that of the test 
gas. Real-gas calculations based on the measured shock speed predict that the 
velocity of the test gaa following the shock is 3600 m/s. It therefore follows that in 
the period between 200 and 466 pa after the shock, the unperturbed gas speed is 
3120 m/s. 

8.1.2. Throat properties 
To establish that one of the primary sources for the noise is at  the throat the 

driver-gas sound speed at  the throat must be obtained. As outlined in $6 it can be 
obtained by two independent methods, either by using the driver-tube filling 
pressure and the primary-diaphragm rupture pressure or by using the gaa velocity 
and sound speed at the inferfm. 

The meamred values of driver-tube Wing pressure and the primary-diaphragm 
rupture pressure are 130 kPa m d  34.6 MPa respectively. Hence, if the driver-gas 
sound speed before compression is assumed to be 1008 m/s then from (6.1) and (6.2) 
the driver-gas sound speed at the throat should be 2665 m/s. However, the gaa speed 
and Mach number a t  the interface &re 3600 m/s and 2.29, respectively, hence, by 
(6.3) the sound speed at the throat is required to be 2079 m/s. 

The source of this discrepancy is not known; however, it is conceivable that the 
cornpression in the free pieton driver is non-adiabatic. It is also possible that the 
static method which waa used to determine the rupture pressure of the primary 
diaphragm may produce a Werent rupture pressure to that which actually occurs 
when the diaphragm is ruptured dynamically, as in the free piston facility. 
Notwithstanding this discrepancy it will be assumed that the value deduced from the 
shock speed memurement, 2080 m/s, is the better estimate of the sound speed a t  the 
throat. 

8.1.3. Noi8e spectral demposition 
A spectral decomposition of the driver-gas noise measured along the centreline by the 
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FIQURE 11. Spectral decomposition of Pitot record of figure 10(a) between 200 

and 456 ps after shock. 

Pitot probe was made. Figure 11 displays the composition of the Pitot pressure signal 
over the time period between 200 and 456 ps after the arrival of the shock. This 
region was chosen as the unperturbed wall pressure is reasonably steady. It can be 
seen that the spectrum has maxima in the ranges 0-5, 50-70 and 74-120 kHz. The 
noise detrimental to the flow quality lies in the frequency range a t  and above 50 kHz. 

From the flow properties deduced in the previous section it can be shown from (5.4) 
and (5.10) with p = 0 that first-order lateral waves exist at  frequencies greater than 
55 kHz. Thus, it is possible for the majority of the detrimental noise to be first-order 
lateral waves. 

8.1.4. Noise source 

The origin of the noise is also of interest. One obvious source of noise is the 
primary-diaphragm rupturing process. If acoustic waves generated at the throat are 
transmitted through the unsteady expansion centred at this diaphragm then, as 
shown in $5.1.2, every frequency of each acoustic wave mode would approach the 
frequency (5.15), where h is determined by the mode. Hence, for a gas speed of 
3120 m/s and a Mach number of 1.8 the first-order lateral waves should approach 
94.2 kHz. 

However, the focusing effect of the unsteady expansion centred at the throat is 
weak because the sound speed ratio across the expansion is only 0.83. Furthermore, 
for a monatomic gas, the power to which this ratio is raised in (5.14) is two. 
Therefore, rather than a distinct frequency, a band of frequencies distributed about 
the focus frequency would be expected after the unsteady expansion. 

If the lowest-frequency first-order lateral wave (p = 0) was excited at the throat 
then downstream of the expansion this component can be shown from (5.4) and 
(5.10) to have a frequency of 70 kHz. This would be the lowest frequency in the band. 

It can be seen in figure 11 that the 74-120 kHz range has a definite peak between 
90 and 94 kHz which would be consistent with weak focusing of first-order lateral 
waves originating at  the throat. Furthermore, the lowest frequency of this range is 
also consistent with being produced at the throat. Hence, it is concluded that this 
part of the spectrum consists of first-order lateral waves which in the main originate 
at  the throat. 



Test flow disturbances in an expansion tube 513 

n 

k 
w (b) (‘I 1 T 4 

0 150 
Time (ps) 

FIGURE 12. Expansion-tube centreline Pitot pressure measurements. Helium driver, air test and 
acceleration gases. T marks fhe test time. Po = 130 kPa. PI = 34.5 MPa. See. table 1 for flow 
properties of (a), (b) and (c). 

Figure us b / s )  us (m/s) a, b / s )  a, ( 4 5 )  U ,  (m/s) PI (Wa) P, (pa) 
5270 4814 1164 1588 9200 3.46 16 

17 
12 (4 

4800 4325 1327 1572 8970 6.65 
12(4 3650 3291 1672 1138 7640 13.2 16 
12 ( b )  

TABLE 1. Flow properties of the driver and test gas either side of the driver-test gas interface 
for figure 12. Numbered subscripts refer to the regions defined in figure 2. 

The origin of the 50-70 kHz components is not known. However, it will be seen in 
the next section that in the experiments reported here they do not govern the bounds 
for acceptable test conditions. 

0.2. Expansion-tube results 
In $5.2 it was seen that a 1atera.l wave incident upon the driver-test gas interface will 
be attenuated in the test gas if the sound speed of the driver gas is sufficiently less 
than that of the test gas. Owing to the relatively short test-gas slug length it is 
difficult to see from shock-tube Pitot pressure results whether or not the noise 
observed in the driver gas is transmitted into the test gas. However, the effect of the 
interface can be seen in expansion-tube results where the test-gas slug has been 
expanded. 

0.2.1. Helium-driven expansion tube 
Figure 12 displays the expansion-tube centreline Pitot pressure records for 

different shock-tube filling pressures when a helium driver was used. The driver 
conditions are the same as in $8.1, Table 1 tabulates the driver- and test-gas flow 
properties in the shock tube either side of the driver-test gas interface. These 
conditions were chosen so that driver-gas sound speed ranged from being less than 
to greater than that of the test gas. 
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FIQURE 13. Expansion-tube centreline Pitot pressure measurements displaying the effect of the 
test-acceleration gas interface on the noise in two different facilities. (a )  Present experiment, ( b )  a 
reproduction of Norfleet et al. (1965, figure 26). 

In table 1 the test-gas velocity and sound speed were obtained from real-gas 
calculations based on the measured shock speed. The test-gas velocity was assumed 
to be equal to the driver-gas velocity a t  the interface. The driver-gas sound speed was 
then determined from (6.3) where the throat sound speed was assumed to be 
2080 m/s. 

From figure 7, for a driver-gas Mach number of approximately three, the test-gas 
Mach number need only be 2% less to attenuate frequencies twice as high as the 
lowest-frequency lateral wave uo. Hence, from figure 11, as uo = 55 kHz, a 2% 
increase in sound speed would attenuate the majority of the noise produced in the 
driver gas. 

From table 1 it can be seen that the driver-gas sound speed is less than the test- 
gas sound speed at  the two higher shock speeds (figures 12a and 126) and the reverse 
situation occurs at the smallest shock speed (figure 12c). There is a 36% and l8Y0 
increase in sound speed across the driver-test gas interface for the conditions which 
produced figures 12 (a) and 12 (6) respectively. Hence, only minimal noise should be 
transmitted into the test gas. This is indeed displayed in these figures. Furthermore, 
it can be seen in figure 12(c), where the test-gas sound speed is less than the driver- 
gas sound speed, that significant noise disrupts the flow. Thus, these results are 
consistent with the assertion that the disturbances are first-order lateral waves which 
are generated in the driver gas. 

8.2.2. Test-acceleration gas interface 
A significant result which confirms the existence of lateral waves and the non- 

existence of longitudinal waves in the test gas is displayed in figures 13(a) and 13(6). 
These figures are the centreline Pitot pressure record from different expansion tubes, 
both of which used air test and acceleration gases. Figure 13 (a)  is the centreline Pitot 
pressure in the expansion tube described in $3,  which has an internal diameter of 
37 mm. Figure 13(6) is the centreline Pitot pressure obtained by Norfleet et al. (1965) 
from an expansion tube with an internal diameter of 102 mm. 

From figure 2 it  can be seen that the acceleration gas which arrives at the test 
section before the test gas would, in general, have a different sound speed to that of 
the test gas. The steps in figures 13(a) and 13(6) are produced because of this 
difference in sound speed. To the right of the step is the test gas and to the left is the 
acceleration gas. In figure 13(a) the Pitot pressure measured in the acceleration gas 
is approximately half that in the test gas. Hence, the acceleration gas sound speed 
is approximately d 2  that of the test gas. Therefore, as the acceleration-gas sound 
speed is greater than the test-gas sound speed the interface will act as a filter to 
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FI~IJRE 14. Expansion-tube centreline Pitot pressure measurements. Argon driver gaa, air test and 
acceleration gases. PI = 34.5 MPa. See table 2 for flow properties of (a),  (b)  and (e). 

figure us (m/s) 4 (m/4 (m/s) a, ( 4 s )  Po (Wa) G (Wa) P, (Pa) 
14 (4 2050 1714 621 866 125 13.7 17 
14(b) 2000 1668 618 851 130 13.7 32 
14(4 2350 1995 526 941 120 3.46 33 

TABLE 2. Flow properties of the driver and test gases either side of the driver-test gas interface 
for figure 14. Numbered subscripts refer to the regions defined in figure 2 

lateral waves. From the measured shock speed of 3700m/s and (5.20b) it can be 
shown that v,,/v, x 0.2, hence, a significant band of lateral wave frequencies will be 
attenuated. 

In contrast, from (5.17) and (5.22) the transmission coefficient for a longitudinal 
wave would be approximately 0.8. Thus, only a slight decrew in the relative size of 
the disturbance to the unperturbed state should be observed if the disturbance is a 
longitudinal wave. 

It is observed in figure 13(a, b) that effectively no disturbances am transmitted 
into the acceleration gas in either facility. Thus, this disturbance is consistent with 
the lateral wave model and fnrthermore is inconsistent with the longitudinal wave 
model. 

8.2.3. Argon-driven expansion tube 
In 98.2.1. helium was used w 8 driver gaa. As a result the sound speed of the driver 

gas was relatively high at  the throat. In this section expamion-tube experiments are 
presented for an argon driver gas to display the effect that drivers with lower sound 
speed have on noise transmitted through the driveptest gas interface. 

Figure 14(a-c) shows centreline Pitot pressure records from an expansion tube 
when the test gas wm driven by argon. Table 2 tabulates the properties of the driver 
and test gases. Owing to the lack of shock-tube Pitot pressure measurements the 
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driver-gas properties were obtained assuming the driver gas was adiabatically 
compressed in the driver tube, as outlined in $6. 

The value of q / u 0  for the driver-test gas interface determined from (5.20b) and 
table 2 is 3.9 compared with 3.23 for the helium driver used for figure 12. Hence, a 
slightly more favourable ratio exists for the argon driver and yet there is significantly 
more noise in the test gas. This apparent paradox occurs because the argon-driver- 
gas sound speed is about one third of the helium-driver-gas sound speed. Hence, from 
(5.21) the highest frequency which is attenuated at this interface is approximately 
one third of the highest frequency which is attenuated across the helium-driver-test 
gas interface. Therefore, the higher frequencies associated with diaphragm rupture 
are not completely attenuated. This shows that the driver-gas sound speed at  the 
time when the primary diaphragm ruptures is important in determining the 
magnitude of the increase in the sound speed across the driver-test gas interface. 

In the above argument it is assumed that the band of frequencies which are 
incident upon the driver-test gas interface for the argon driver is the same as that 
for the helium driver. This is not strictly correct. It should be understood that 
different driver-gas sound speeds at  the throat will produce different ranges of 
frequencies incident upon the driver-test gas interface. This change in bandwidth is 
relatively minor in the experiments reported here ; however, for completeness the 
band of frequencies originating in the argon driver gas which is incident upon the 
driver-test gas interface will be determined. 

It is assumed that the frequencies relative to the laboratory produced when the 
primary diaphragm ruptures are functions of tunnel and diaphragm geometry. Thus, 
provided these geometries remain the same, the band of frequencies relative to the 
tunnel which are induced into the driver gas is identical at the throat for all driver- 
gas sound speeds. However, since the Doppler effect on lateral waves is dependent on 
sound and gas speed and not simply Mach-number dependent the fundamental 
frequencies induced into the driver gas at  the throat will depend on the sound speed 
at the throat. This in turn produces a different range of frequencies which will be 
incident on the driver-test gas interface. 

It is assumed that the frequency range 74-125 kHz with a peak at 92 kHz in figure 
11 is produced by the primary diaphragm. Following the above assumptions, for 
figure 14(b), the primary diaphragm would produce a band of frequencies from 
67-117 kHz with a peak at  85 kHz in the shock tube at the driver-test gas interface. 
The lowest unattenuated frequency determined from (5.20b) for this condition is 
78 kHz. Hence, it can be seen that only a portion of the diaphragm noise, which does 
not include the peak, would be attenuated under these circumstances. 

Figure l4(c) was produced by increasing the shock speed in the shock tube by 
lowering the shock-tube filling pressure. There was also a minor change in the driver- 
gas filling pressure. The overall effect is to dramatically increase the highest 
attenuated frequency. For this condition the primary diaphragm would produce a 
band of frequencies in the driver gas from 63-107 kHz with a peak at 78 kHz. The 
lowest unattenuated frequency determined from (5.20b) is 133 kHz. Hence, it can be 
seen that all the noise would be attenuated a t  the driver-test gas interface. This is 
reflected in the experimental results. 

8.2.4. Resonance in an expansion tube 
An interesting phenomenon occurs in figure 14(a). From table 2 it  would appear 

that the shock-tube conditions for both figures 14(a) and 14(b) are almost identical 
and yet a vastly different result occurs. The acceleration-tube filling pressures were 
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FIGURE 15. Pitot pressure transmission coefficient as a function of test-gas sound speed at different 
frequencies, for disturbances transmitted fkom the driver gas to the test gas. Driver-gas conditions 
are as liated in table 2, figure 14(b). Frequencies are measured from a laboratory &me of reference 
and are the frequencies of the disturbance in the driver gas. yn = i, ys = i. 

different in the two cams, but it is not believed that this is the cause of the 
amplification, or resonance, of the noise. 

Figure 15 displays the Pitot pressure transmission coefficient (5.22) of first-order 
lateral waves as a function of test-gas sound speed. The driver conditions are those 
given in table 2 for figure 14(a). These transmission coefficients are for disturbances 
transmitted downstream from the driver gas into the test gas. It can be seen that the 
transmission coefficient is dependent upon the frequency of the disturbance. The 
frequencies displayed in figure 15 are those of disturbances in the driver gas 
measured from a laborcltory frame of reference. 

There are two important features displayed in figure 15. Firsf, it can be seen that 
if the test-gas sound speed is increased beyond that the driver-gas sound speed 
(621 m/s) then the transmission coefficient becomes increasingly dependent upon the 
frequency of the disturbance in the driver gas. Secondly, it can be seen that as the 
test-gas sound speed increases, the transmission coefficient asymptotes to  a finite 
value. If the sound speed is incrertsed beyond this point, exponential decay of the 
transmitted disturbance occurs. 

Close to the asymptote, it can be seen that only a small change in the test-gas 
sound speed results in a sizable change in the transmission coefficient. Therefore, if 
the change in sound speed across the driver-test gas interface is such that the 
predominant frequency of the disturbance in the driver gas is close to the lowest 
unattenuated frequency, then a very unstable situation occurs where only a slight 
change in the conditions will produce a large change in the amplitude of the noise 
transmitted into the test gas. 

It is interesting to note that for figure 14(a) the primary diaphragm would produce 
a band of frequencies in the range 68-118 kHz with a peak a t  86 kHz. The lowest 
unattenuated frequency is 82 kHz. Hence, the peak frequency is close to the lowest 
unattenuated frequency, as is also the case in figure 14 (b). It is therefore conceivable 
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FIGURE 16. Expansion-tube centreline Pitot pressure measurements. Air test and acceleration 
gases; = 0.018 m: (a )  Us = 2410 m/s, Us, = 5970 m/s, u,/a, = 0.46, ( b )  Us = 2500 m/s. 
Us, = 4680 m/s, a3/u5 = 0.67. ( c , d )  Pitot pressure records obtained by Miller (1977) and Norfleet 
et al. (1965) respectively. 

that the radically different amplification of the noise in figures 14(a) and 14(b) results 
from the closeness of the unattenuated frequency to the frequency at which the 
driver-gas noise produce by the primary diaphragm peaks. 

9. Frequency focusing 
In $5.1.2 it was shown that, provided a significant drop in the sound speed 

occurred across an unsteady expansion, the different components of the noise 
upstream of the expansion would be focused to one particular frequency for every 
different mode. Furthermore, from figure 4 it can be seen that the degree of focusing 
is very sensitive to the ratio of sound speeds across the expansion. For a specific heat 
ratio of focusing becomes significantly more pronounced for sound speed ratios of 
less than 0.5. 

The degree to which noise is focused by different sound speed ratios across the 
unsteady expansion centred at  the secondary diaphragm in an expansion tube has 
been observed using centreline Pitot pressure measurements. Different sound speed 
ratios across this expansion were obtained by changing the acceleration-tube filling 
pressure. Conditions upstream of the expansion were not changed. Pitot pressure 
measurements are shown in figures l6(a) and 16(b) where the sound speed ratios 
across the unsteady expansion were 0.46 and 0.67 respectively. These values were 
derived from the sound speed in the shock tube assuming the gas is perfect with 

From figure 4 it can be seen that significantly more focusing should occur at  the 
lower sound speed ratio. This is reflected in the experimental results. In figure 16 (a)  
it  can be seen that a structured disturbance does occur downstream of the expansion, 
where as in figure 16 ( b )  the disturbance is less structured. If the shock speed prior to 

y = ; .  
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secondary-diaphragm rupture is used to predict the values of u and u upstream of the 
expansion then from (5.15), for a perfect gas with y = f ,  the period corresponding to 
a fully focused first-order lateral wave is 21 ps. Real-gas calculations which assume 
the flow is frozen within the expansion predict a more strongly focused disturbance, 
due to the decrertse in specific heat ratio, with a period of 25 p. The measured value 
taken between 170 and 220 ps in figure 16 (a) is 21 & 2 ps. 

The effect of focusing has also been observed in the facilities used by Miller (1977) 
and Norfleet et uJ. (1965). The inside diameters of these facilities &re 152 and 102 mm 
respectively, which are significantly different to the inside diameter of the facility 
which produced figure 16(u) (37 mm). Figures 16(c) and 16(d) are the Pitot pressure 
records obtained by Miller (figure 6) and Norfleet et al. (figure 25), respectively. For 
a fully focused first-order lateral wave the period of the disturbance in Miller’s 
experiment should be 104 p and in Norfleet et aE.’s experiment it should be 69 pa. 
This compares satisfactorily with the measured values of approximately 100 ps, 
average of the period between 130 and 330 ps in figure 16(c), and 89 pa average over 
the period between 160 and 340 p in figure 16(d), respectively. 

Remembering that longitudinal waves would not produce such an oscillatory 
disturbance, these experimental results can be accepted as evidence that lateral 
acoustic waves are the dominant mode of the flow disturbances. 

10. Conclusions 
It has been sho& that the test time in an expansion tube can be limited by either 

the wave system associated with the unsteady expansion centred at the secondary 
diaphragm or by disturbances in the driver gas. These disturbances can be modelled 
as first-order lateral waves. 

The wave system may limit the test time through arrival at the test section of 
either the downstream edge of the unsteady expansion, or the downstream edge of 
the reflection of the upstream edge of this expansion from the driver-test gas 
interface. The maximum test time occurs when the two arrive simultaneously, a 
condition which is sensitive to the length of the acceleration tube, as well as to the 
velocity ratio across the expansion. This sensitivity is such that a variable 
acceleration-tube length is likely to be an important feature of a practical expansion- 
tube facility. 

The acoustic waves in the driver gas limit the test time by penetrating the 
driver-test gas interface, and ultimately appearing as flow disturbances in the 
expanded test gas. Their existence as lateral acoustic waves was established through 
experimental confirmation of an analysis which predicted that focusing of these 
waves towards a particular frequency would occur when the test gas was subjected 
to a strong unsteady expansion. The effect would not be obsemd for longitudinal 
acoustic wavea. 

The penetration of these waves into the test gas can be inhibited by choosing 
driver conditions such that there is sufficient increase in the speed of sound from the 
expanded driver gas to the test gas at the driver-test gas interface. The magnitude 
of the required increase grows with the frequency of the waves to be inhibited and 
reduces as the driver-gas sound speed increases. These features signify that, unless 
some means of elimination of the lateral acoustic waves in the driver gas can be 
found, expansion tubes can only be expected to operate successfully when the Mach 
number of the driver gas at the interfm exceeds certain critical values. Values of 4 
to 5 were suggested by the experiments reported here, indicating that substantial 
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driver-gas expansion ratios may be required, and when this is combined with the 
advantage conferred by a high driver-gas sound speed it implies that an expansion 
tube may be most useful towards the high velocity end of its theoretical range of 
operation. 
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Appendix. Validation of Mach number predictions 
To predict the attenuation of the noise transmitted into the test gas it is essential 

to know the Mach numbers and velocities of both test and driver gases. The Mach 
number of the test gas is obtained from real-gas calculations based on shock speed 
and shock-tube filling pressure ; however, the Mach number of the driver gas must be 
determined from Pitot and static pressure measurements using Rayleigh’s Pitot 
pressure formula (5.6). The accuracy of this method is established by comparing the 
real-gas predicted Mach number with that determined from the static and Pitot 
pressure measurements made in the test gas in the shock-tube experiment described 
in 38.1. 

Real-gas calculations predict that the velocity of the test gas following the shock 
is 3600m/s, the Mach number is 2.7, the static pressure is 450kPa and the 
equilibrium specific heat ratio is 1.22. The location of the driveytest gas interface 
was determined as in $6 and is concluded to be coincident with the large dip in the 
Pitot pressure 43 ps after the shock. The Pitot and static pressures measured 
between 14 and 40 ps after the shock are 4133 f 300 and 473 & 30 kPa respectively. 
Using these measured pressures and a specific heat ratio of 1.22, Rayleigh’s Pitot 
pressure formula (5.6) predicts a Mach number of 2.66+0.18, which is in good 
agreement with the theoretical value of 2.7. 
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